0=-16t^2+215+40

Simple and best practice solution for 0=-16t^2+215+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+215+40 equation:



0=-16t^2+215+40
We move all terms to the left:
0-(-16t^2+215+40)=0
We add all the numbers together, and all the variables
-(-16t^2+215+40)=0
We get rid of parentheses
16t^2-215-40=0
We add all the numbers together, and all the variables
16t^2-255=0
a = 16; b = 0; c = -255;
Δ = b2-4ac
Δ = 02-4·16·(-255)
Δ = 16320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16320}=\sqrt{64*255}=\sqrt{64}*\sqrt{255}=8\sqrt{255}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{255}}{2*16}=\frac{0-8\sqrt{255}}{32} =-\frac{8\sqrt{255}}{32} =-\frac{\sqrt{255}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{255}}{2*16}=\frac{0+8\sqrt{255}}{32} =\frac{8\sqrt{255}}{32} =\frac{\sqrt{255}}{4} $

See similar equations:

| -21/2-m=-5/2 | | -2(5x-5)+4x=8x+5 | | 15=26/31x | | -3(b+1)+8(b-1)=b-8+3b-2 | | 25(2-u)+7u=-22 | | 6+x=4+6x= | | -4(8r+5)=0 | | 42+3q=90 | | 10x-61+x+10=18+5 | | d+3=-10 | | 2(3-z)=5z-2+z | | 5(2x-4)-2(x-5)=-11 | | 10-3a=5a+22-9a | | 1s+12=12+1s | | 3q=58 | | -10x+3+8x=4x-15 | | 84-12x=96 | | x=140+.74x | | 3(4x-2)-2(2x+3)-5=15 | | 5-2x=47 | | 12x-5=12-5x | | 5(7-7x)=-140 | | 6c+8=14+3D | | -5x+4=-4x | | 11u=12+5u | | −2(x+2)^2=5 | | −2(x+2)2=5 | | 90-37=x | | -(8/7)=-(2/3)u-(1/2) | | x+12+x+13=15 | | 9x+2=3x+26 | | 20y=50 |

Equations solver categories